Lactose repressor hinge domain independently binds DNA

نویسندگان

  • Joseph S. Xu
  • Madeleine N. Hewitt
  • Jaskeerat S. Gulati
  • Matthew A. Cruz
  • Hongli Zhan
  • Shirley Liu
  • Kathleen S. Matthews
چکیده

The short 8-10 amino acid "hinge" sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer-binding domains. Structural studies of full-length or truncated LacI-operator DNA complexes demonstrate insertion of the dimeric helical "hinge" structure at the center of the operator sequence. This association bends the DNA ∼40° and aligns flanking semi-symmetric DNA sites for optimal contact by the N-terminal helix-turn-helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1-50 to remove the HtH DNA binding domain or residues 1-58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix-turn-helix domain with its highly positive charge. LacI missing residues 1-50 binds to DNA with ∼4-fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1-58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of corepressor-mediated specific DNA binding by the purine repressor

The modulation of the affinity of DNA-binding proteins by small molecule effectors for cognate DNA sites is common to both prokaryotes and eukaryotes. However, the mechanisms by which effector binding to one domain affects DNA binding by a distal domain are poorly understood structurally. In initial studies to provide insight into the mechanism of effector-modulated DNA binding of the lactose r...

متن کامل

Mutation in hinge region of lactose repressor protein alters physical and functional properties.

A mutant of the Escherichia coli lactose repressor (BG124) in which serine at position 77 is replaced by leucine has been examined by physical methods. Consistent with the phenotypic character of this i-d mutant, BG124 protein did not bind lactose operator specifically, but did bind to DNA nonspecifically. Titration with inducer monitoring tryptophan fluorescence changes yielded a biphasic satu...

متن کامل

A single mutation in the core domain of the lac repressor reduces leakiness

BACKGROUND The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements triggered by binding of the lactose isomer allolactose to the core domain of the repre...

متن کامل

Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins.

The bacterial LacI/GalR family repressors such as lactose operon repressor (LacI), purine nucleotide synthesis repressor (PurR), and trehalose operon repressor (TreR) consist of not only the N-terminal helix-turn-helix DNA-binding domain but also the C-terminal ligand-binding domain that is structurally homologous to periplasmic sugar-binding proteins. These structural features imply that the r...

متن کامل

A role for the Smc3 hinge domain in the maintenance of sister chromatid cohesion.

Cohesin is a conserved protein complex required for sister chromatid cohesion, chromosome condensation, DNA damage repair, and regulation of transcription. Although cohesin functions to tether DNA duplexes, the contribution of its individual domains to this activity remains poorly understood. We interrogated the Smc3p subunit of cohesin by random insertion mutagenesis. Analysis of a mutant in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2018